A class of stochastic games with infinitely many interacting agents related to Glauber dynamics on random graphs
نویسندگان
چکیده
We introduce and study a class of infinite-horizon non-zero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zero-temperature Glauber dynamics on random graphs of possibly infinite volume.
منابع مشابه
Stochastic games with infinitely many interacting agents
We introduce and study a class of infinite-horizon non-zero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove...
متن کاملDynamical replica analysis of processes on finitely connected random graphs: I. Vertex covering
Abstract We study the stochastic dynamics of Ising spin models with random bonds, interacting on finitely connected Poissonian random graphs. We use the dynamical replica method to derive closed dynamical equations for the joint spin–field probability distribution, and solve these within the replica-symmetry ansatz. Although the theory is developed in a general setting, with a view to future ap...
متن کاملStochastic Games: Existence of the Minmax
The existence of the value for stochastic games with finitely many states and actions, as well as for a class of stochastic games with infinitely many states and actions, is proved in [2]. Here we use essentially the same tools to derive the existence of the minmax and maxmin for n-player stochastic games with finitely many states and actions, as well as for a corresponding class of n-person st...
متن کاملSubset Glauber Dynamics on Graphs, Hypergraphs and Matroids of Bounded Tree-Width
Motivated by the ‘subgraphs world’ view of the ferromagnetic Ising model, we analyse the mixing times of Glauber dynamics based on subset expansion expressions for classes of graph, hypergraph and matroid polynomials. With a canonical paths argument, we demonstrate that the chains defined within this framework mix rapidly upon graphs, hypergraphs and matroids of bounded tree-width. This extends...
متن کاملRandomly coloring sparse random graphs with fewer colors than the maximum degree
We analyze Markov chains for generating a random k-coloring of a random graph Gn,d/n. When the average degree d is constant, a random graph has maximum degree log n/ log log n, with high probability. We efficiently generate a random k-coloring when k = Ω(log log n/ log log log n), i.e., with many fewer colors than the maximum degree. Previous results hold for a more general class of graphs, but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007